97 research outputs found

    Evaluation of the Suitability of NEON SIMD Microprocessor Extensions Under Proton Irradiation

    Get PDF
    This paper analyzes the suitability of single-instruction multiple data (SIMD) extensions of current microprocessors under radiation environments. SIMD extensions are intended for software acceleration, focusing mostly in applications that require high computational effort, which are common in many fields such as computer vision. SIMD extensions use a dedicated coprocessor that makes possible packing several instructions in one single extended instruction. Applications that require high performance could benefit from the use of SIMD coprocessors, but their reliability needs to be studied. In this paper, NEON, the SIMD coprocessor of ARM microprocessors, has been selected as a case study to explore the behavior of SIMD extensions under radiation. Radiation experiments of ARM CORTEX-A9 microprocessors have been accomplished with the objective of determining how the use of this kind of coprocessor can affect the system reliability

    Online error detection through trace infrastructure in ARM microprocessors

    Get PDF
    This paper presents a solution for error detection in ARM microprocessors based on the use of the trace infrastructure. This approach uses the Program and Instrumentation Trace Macrocells that are part of ARM's CoreSight architecture to detect control-flow and data-flow errors, respectively. The proposed approach has been tested with low-energy protons. Experimental results demonstrate high accuracy with up to 95% of observed errors detected in a commercial microprocessor with no hardware modification. In addition, it is shown how the proposed approach can be useful for further analysis and diagnosis of the cause of errors

    Update on Dihydropteroate Synthase (DHPS) Mutations in Pneumocystis jirovecii

    Get PDF
    A Pneumocystis jirovecii is one of the most important microorganisms that cause pneumonia in immunosupressed individuals. The guideline for treatment and prophylaxis of Pneumocystis pneumonia (PcP) is the use of a combination of sulfa drug-containing trimethroprim and sulfamethoxazole. In the absence of a reliable method to culture Pneumocystis, molecular techniques have been developed to detect mutations in the dihydropteroate synthase gene, the target of sulfa drugs, where mutations are related to sulfa resistance in other microorganisms. The presence of dihydropteroate synthase (DHPS) mutations has been described at codon 55 and 57 and found almost around the world. In the current work, we analyzed the most common methods to identify these mutations, their geographical distribution around the world, and their clinical implications. In addition, we describe new emerging DHPS mutations. Other aspects, such as the possibility of transmitting Pneumocystis mutated organisms between susceptible patients is also described, as well as a brief summary of approaches to study these mutations in a heterologous expression system

    PTM-based hybrid error-detection architecture for ARM microprocessors

    Get PDF
    This work presents a hybrid error detection architecture that uses ARM PTM trace interface to observe ARM microprocessor behaviour. The proposed approach is suitable for COTS microprocessors because it does not modify the microprocessor architecture and is able to detect errors thanks to the reuse of its trace subsystem. Validation has been performed by proton irradiation and fault injection campaigns on a Zynq AP SoC including a Cortex-A9 ARM microprocessor and an implementation of the proposed hardware monitor in programmable logic. Experimental results demonstrate that a high error detection rate can be achieved on a commercial microprocessor

    Perfil inmunológico de los cerdos de dos meses de edad

    Get PDF
    El grado de madurez inmunológica se ha evaluado e-n humanos y animales por medio del perfil inmunológico, el cual se basa en la cuantificación de los diferentes leucocitos y subpoblaciones de linfocitos circulantes, en la capacidad fagocitaria y microbic

    Centralized Inverted Decoupling Control

    Get PDF
    This paper presents a new methodology of multivariable centralized control based on the structure of inverted decoupling. The method is presented for general n×n processes, obtaining very simple general expressions for the controller elements with a complexity independent of the system size. The possible configurations and realizability conditions are stated. Then, the specification of performance requirements is carried out from simple open loop transfer functions for three common cases. As a particular case, it is shown that the resulting controller elements have PI structure or filtered derivative action plus a time delay when the process elements are given by first order plus time delay systems. Comparisons with other works demonstrate the effectiveness of this methodology through the use of several simulation examples and an experimental lab process

    Orange jasmine as a trap crop to control Diaphorina citri

    Full text link
    [EN] Novel, suitable and sustainable alternative control tactics that have the potential to reduce migration of Diaphorina citri into commercial citrus orchards are essential to improve management of huanglongbing (HLB). In this study, the effect of orange jasmine (Murraya paniculata) as a border trap crop on psyllid settlement and dispersal was assessed in citrus orchards. Furthermore, volatile emission profiles and relative attractiveness of both orange jasmine and sweet orange (Citrus¿×¿aurantium L., syn. Citrus sinensis (L.) Osbeck) nursery flushes to D. citri were investigated. In newly established citrus orchards, the trap crop reduced the capture of psyllids in yellow sticky traps and the number of psyllids that settled on citrus trees compared to fallow mowed grass fields by 40% and 83%, respectively. Psyllids were attracted and killed by thiamethoxam-treated orange jasmine suggesting that the trap crop could act as a `sink¿ for D. citri. Additionally, the presence of the trap crop reduced HLB incidence by 43%. Olfactometer experiments showed that orange jasmine plays an attractive role on psyllid behavior and that this attractiveness may be associated with differences in the volatile profiles emitted by orange jasmine in comparison with sweet orange. Results indicated that insecticide-treated M. paniculata may act as a trap crop to attract and kill D. citri before they settled on the edges of citrus orchards, which significantly contributes to the reduction of HLB primary spread.This work was supported by Fund for Citrus Protection (Fundecitrus) and by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (Proc. 2015/07011-3). We thank Moacir Celio Vizone, Felipe Marinho Martini and Joao Pedro Ancoma Lopes for technical support with experiments. Furthermore, we thank Cambuhy Agricola Ltda. and University of Araraquara (Uniara) for providing the areas in which the field experiments were performed. Second author received scholarship from National Council for Scientific and Technological Development (CNPq)/Brazil (Proc. 300153/2011-2).Tomaseto, AF.; Marques, RN.; Fereres, A.; Zanardi, OZ.; Volpe, HXL.; Alquézar-García, B.; Peña, L.... (2019). Orange jasmine as a trap crop to control Diaphorina citri. Scientific Reports. 9:1-11. https://doi.org/10.1038/s41598-019-38597-5S1119Bové, J. M. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 88, 7–37 (2006).Alvarez, S., Rohrig, E., Solís, D. & Thomas, M. H. Citrus greening disease (Huanglongbing) in Florida: economic impact, management and the potential for biological control. Agric. Res. 5, 109–118 (2016).Belasque, J. Jr. et al. Lessons from huanglongbing management in São Paulo state, Brazil. J. Plant Pathol. 92, 285–302 (2010).Boina, D. R., Meyer, W. L., Onagbola, E. O. & Stelinski, L. L. Quantifying dispersal of Diaphorina citri (Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management. Environ. Entomol. 38, 1250–8 (2009).Lewis-Rosenblum, H., Martini, X., Tiwari, S. & Stelinski, L. L. Seasonal movement patterns and long-range dispersal of Asian citrus psyllid in Florida citrus. J. Econ. Entomol. 108, 3–10 (2015).Hall, D. G. & Hentz, M. G. Seasonal flight activity by the Asian citrus psyllid in east central Florida. Entomol. Exp. Appl. 139, 75–85 (2011).Tomaseto, A. F., Krugner, R. & Lopes, J. R. S. Effect of plant barriers and citrus leaf age on dispersal of Diaphorina citri (Hemiptera: Liviidae). J. Appl. Entomol. 140, 91–102 (2016).Gottwald, T. R. Current epidemiological understanding of citrus huanglongbing. Annu. Rev. Phytopathol. 48, 119–139 (2010).Bassanezi, R. B. et al. Efficacy of area-wide inoculum reduction and vector control on temporal progress of huanglongbing in young sweet orange plantings. Plant Dis. 97, 789–796 (2013).Sétamou, M. & Bartels, D. W. Living on the edges: spatial niche occupation of Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), in citrus groves. PLoS One 10, 1–21 (2015).Gottwald, T., Irey, M., Gast, T. & Parnell, S. Spatio-temporal analysis of an HLB epidemic in Florida and implications for spread. In Proceedings of the 17 th Conference of International Organization of Citrus Virologists, IOCV, University of California, Riverside, CA, 84–97 (2010).Shelton, A. M. & Badenes-Perez, F. R. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol 51, 285–308 (2006).Hokkanen, H. M. T. Trap cropping in pest management. Annu. Rev. Entomol. 36, 119–138 (1991).Stern, V. M., Mueller, A., Sevacherian, V. & Way, M. Lygus bug control in cotton through alfalfa interplanting. Calif. Agric. 8–10 (1969).Godfrey, L. D. & Leigh, T. F. Alfalfa harvest strategy effect on lygus bug (Hemiptera: Miridae) and insect predator population density: Implications for use as trap crop in cotton. Environ. Entomol. 23, 1106–1118 (1994).Gonsalves, D. & Ferreira, S. Transgenic papaya: a case for managing risks of Papaya ringspot virus in Hawaii. Plant Heal. Prog. 1–6, https://doi.org/10.1094/PHP-2003-1113-03-RV (2003)Aubert, B. Trioza erytheae del Guercio and Diaphorina citri Kuwayama (Homoptera: Psylloidea), the two vectors of citrus greening disease: biological aspects and possible control strategies. Fruits 42, 149–162 (1987).Leong, S. C. T., Fatimah, A., Beattie, A., Heng, R. K. J. & King, W. S. Influence of host plant species and flush growth stage on the Asian citrus psyllid, Diaphorina citri Kuwayama. Am. J. Agric. Biol. Sci. 6, 536–543 (2011).Patt, J. M. & Sétamou, M. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environ. Entomol. 39, 618–24 (2010).Damsteegt, V. D. et al. Murraya paniculata and related species as potential hosts and inoculum reservoirs of ‘Candidatus Liberibacter asiaticus’, causal agent of huanglongbing. Plant Dis. 94, 528–533 (2010).Lopes, S. A. et al. Liberibacters associated with orange jasmine in Brazil: Incidence in urban areas and relatedness to citrus liberibacters. Plant Pathol. 59, 1044–1053 (2010).Cifuentes-Arenas, J. C. Huanglongbing e Diaphorina citri: Estudos das relações patógeno-vetor-hospedeiro. Ph.D. Thesis. Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil. 1–133 (2017).Morilla, G. et al. Pepper (Capsicum annuum) is a dead-end host for Tomato yellow leaf curl virus. Phytopathology 95, 1089–1097 (2005).Midega, C. A. O., Pittchar, J. O., Pickett, J. A., Hailu, G. W. & Khan, Z. R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J. E. Smith), in maize in East Africa. Crop Prot. 105, 10–15 (2018).Miranda, M. P. et al. Processed kaolin affects the probing and settling behavior of Diaphorina citri (Hemiptera: Liviidae). Pest Manag. Sci. 74, 1964–1972 (2018).Kobori, Y., Nakata, T., Ohto, Y. & Takasu, F. Dispersal of adult Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae), the vector of citrus greening disease, in artificial release experiments. Appl. Entomol. Zool. 46, 27–30 (2011).Sétamou, M. et al. Diurnal patterns of flight activity and effects of light on host finding behavior of the Asian citrus psyllid. J. Insect Behav. 25, 264–276 (2012).Wenninger, E. J., Stelinski, L. L. & Hall, D. G. Roles of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants. Environ. Entomol. 38, 225–234 (2009).Miranda, M. P., Dos Santos, F. L., Felippe, M. R., Moreno, A. & Fereres, A. Effect of UV-blocking plastic films on take-off and host plant finding ability of Diaphorina citri (Hemiptera: Liviidae). J. Econ. Entomol. 108, 245–251 (2015).Visser, J. H. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31, 121–144 (1986).Robbins, P. S., Alessandro, R. T., Stelinski, L. L. & Lapointe, S. L. Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomol. 95, 774–776 (2012).Fancelli, M. et al. Attractiveness of host plant volatile extracts to the Asian citrus psyllid, Diaphorina citri, is reduced by terpenoids from the non-host cashew. J. Chem. Ecol. 44, 397–405 (2018).Alquézar, B. et al. β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Sci. Rep. 7, 5639 (2017).Jones, R. A. C. Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow‐leafed lupins (Lupinus angustifolius). Ann. Appl. Biol. 122, 501–518 (1993).Beloti, V. H., Alves, G. R., Coletta-Filho, H. D. & Yamamoto, P. T. The Asian citrus psyllid host Murraya koenigii is immune to citrus huanglongbing pathogen ‘Candidatus Liberibacter asiaticus’. Phytopathology 108, 1089–1094 (2018).Walter, A. J., Duan, Y. & Hall, D. G. Titers of ‘Ca. Liberibacter asiaticus’ in Murraya paniculata and Murraya-reared Diaphorina citri are much lower than in Citrus and Citrus-reared psyllids. HortScience 47, 1449–1452 (2012).Walter, A. J., Hall, D. G. & Duan, Y. P. Low incidence of ‘Candidatus Liberibacter asiaticus’ in Murraya paniculata and associated Diaphorina citri. Plant Dis. 96, 827–832 (2012).Ammar, E.-D. D., Ramos, J. E., Hall, D. G., Dawson, W. O. & Shatters, R. G. Acquisition, replication and inoculation of Candidatus Liberibacter asiaticus following various acquisition periods on huanglongbing-infected citrus by nymphs and adults of the Asian citrus psyllid. PLoS One 11, e0159594 (2016).Inoue, H. et al. Enhanced proliferation and efficient transmission of Candidatus Liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Ann. Appl. Biol. 155, 29–36 (2009).Pelz-Stelinski, K. S., Brlansky, R. H., Ebert, T. A. & Rogers, M. E. Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). J. Econ. Entomol. 103, 1531–1541 (2010).Canale, M. C. et al. Latency and persistence of ‘Candidatus Liberibacter asiaticus’ in its psyllid vector, Diaphorina citri (Hemiptera: Liviidae). Phytopathology 107, 264–272 (2017).Li, W., Hartung, J. S. & Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 66, 104–115 (2006).Nakata, T. Effectiveness of micronized fluorescent powder for marking citrus psyllid. Diaphorina citri. Appl. Entomol. Zool. 43, 33–36 (2008).Tomaseto, A. F. et al. Environmental conditions for Diaphorina citri Kuwayama (Hemiptera: Liviidae) take-off. J. Appl. Entomol. 142, 104–113 (2018).Paris, T. M., Croxton, S. D., Stansly, P. A. & Allan, S. A. Temporal response and attraction of Diaphorina citri to visual stimuli. Entomol. Exp. Appl. 155, 137–147 (2015).Zanardi, O. Z. et al. Putative sex pheromone of the Asian citrus psyllid, Diaphorina citri, breaks down into an attractant. Sci. Rep. 8, 455 (2018).Metsalu, T. & Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–W570 (2015).Fournier, D. A. et al. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. 135, 370–384 (1972).Demétrio, C. G. B., Hinde, J. & Moral, R. A. In Ecological Modelling Applied to Entomology (eds Ferreira, C. P. & Godoy, W. A. C.) 219–259 (Springer, 2014).Lenth, R. V. Least-Squares Means: the R package lsmeans. J. Stat. Softw. 69, (2016).R Core Team R: A language and environment for statistical computing. 2015. R Foundation for Statistical Computing, Vienna, Austria (2015). Available at, http://www.r-project.org/ . (Accessed: 20th July 2017)

    Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology

    Get PDF
    The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called “hidden spindle hub”, proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system

    Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach

    Get PDF
    Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies
    corecore